2017-10-25, 01:07
  #90037
Medlem
Citat:
Ursprungligen postat av Ghamie
Lös z⁴ = -16i med hjälp av binomiska ekvationen. Arg(-16i) bör väl vara 3pi/2 (270 grader). Jag räknar vidare tills svaret och får 3pi/8 + n(pi)/2. Facit skriver samma men -pi/8. Och 3pi/8 är icke -pi/8

Tänker att de förmodligen tänkt att arg(-16i) = -pi/2 istället. Men bör man ej få samma svar? Arg(-16i) = 3pi/2 = -pi/2. Eller tänker jag fel?

Sätt n = -1+m i ditt svar så får du z = 3*pi/8 + (-1+m)*pi/2 = -pi/8 + m*pi/2.
Citera
2017-10-25, 07:46
  #90038
Medlem
nihilverums avatar
Citat:
Ursprungligen postat av Quicksandt
https://imgur.com/a/EOy7I

Har svårt att greppa hur man tar fram normalen i uppgiften för toppytan.
Jag vet hur normalen definierats men jag förstår inte vad man deriverat.

På toppen är z = 2, ja. Men på toppen är den väl fortfarande en funktion av x och y?
För att ta fram normalen i frågan deriverar de alltså z = 2 med avseende på x och y?

divF = 9. och N = (0,0,1) Hur får man då helt plötsligt F*N = 4z?

Normalen är N = (0,0,1) och kraften uttryckt på vektorform för en valfri punkt är F = (5x, 3x², 4z). Då blir skalärprodukten mellan dessa F·N = 5x*0 + 3x²* 0 + 4z*1 = 4z.

Citat:
Ursprungligen postat av Quicksandt
Samma sak gäller den här frågan:
https://imgur.com/a/S2Qrk

Hur får man fram normalkraften?

Samma sak här - beräkna skalärprodukten mellan N och F. Du har precis som i den förra uppgiften F uttryckligen given i uppgiftstexten och N bestämmer man på det sätt som visas i facit.
Citera
2017-10-25, 14:01
  #90039
Medlem
Sannolikhetsteori
Uppg:
om en S.V X har fördelningsfunktion
F(x) = { 0 om x <-1 , och 0.5(x+1) om x ∈ [-1,1], och 1 om x>1.

Och man är intresserad av P(X>0.5)

alltså då är ju den redan antideriverad och klar, eftersom det står stora F där? är det bara att slänga in F(1)-F(-1) då i funktionen, F(x)?
Citera
2017-10-25, 17:50
  #90040
Medlem
WorlocKs avatar
Citat:
Ursprungligen postat av melyhna
Det blir ² ändå, eftersom du bryter ut. Multiplicerar du in x i parantesen får du ².

Jämf med tex (16x-8) = 8(2x-1)
Jättetack!

Ny fråga. Minusvärden.

Ge exempel på en andragradsfunktion som har en maximipunkt i (0, −3)

f(x) = -x² -3

Jag begriper att lösningen ser ut sådär, men dessa minustecken gör mig galen.
Säg att jag gör en värdetabell, -2 , 0 och 2.

När jag placerar in -2, skrivs det då -(-2)²? Vilket blir -4? Hur ser då positiva 2 ut? -2², vilket också blir -4. Eller är jag helt ute och cyklar. (-2)(-2) = 4 (eller i detta fall -(-2)(-2) = -4) och -2-2 = -4.
Citera
2017-10-25, 19:27
  #90041
Medlem
https://i.imgur.com/CCAcNxb.png

?

Antar att man ska skapa punkter där linjerna tangerar cirkeln, och att denna vinkel sedan blir rät? Men sedan?
Citat:
Ursprungligen postat av WorlocK
Jättetack!

Ny fråga. Minusvärden.

Ge exempel på en andragradsfunktion som har en maximipunkt i (0, −3)

f(x) = -x² -3

Jag begriper att lösningen ser ut sådär, men dessa minustecken gör mig galen.
Säg att jag gör en värdetabell, -2 , 0 och 2.

När jag placerar in -2, skrivs det då -(-2)²? Vilket blir -4? Hur ser då positiva 2 ut? -2², vilket också blir -4. Eller är jag helt ute och cyklar. (-2)(-2) = 4 (eller i detta fall -(-2)(-2) = -4) och -2-2 = -4.
Om minustecknet står innan kvadraten så blir det alltid negativt som du är inne på, i ditt exempel blir det alltså -4 oavsett om det är 2 eller -2 du sätter in.
Citera
2017-10-25, 19:51
  #90042
Medlem
nihilverums avatar
Citat:
Ursprungligen postat av fafesc
https://i.imgur.com/CCAcNxb.png

?

Antar att man ska skapa punkter där linjerna tangerar cirkeln, och att denna vinkel sedan blir rät? Men sedan?

Av symmetriskäl så är vinkeln mellan den vågräta linjen och BC samt mellan den vågräta linjen och BD båda π/6. Dra en linje från den lilla cirkelns centrum till endera punkten där BC eller BD tangerar cirkeln. Detta kommer att ge upphov till en rätvinklig triangel, eftersom en radie i en cirkel alltid är vinkelrät mot motsvarande tangent.

Då har du alltså en rätvinklig triangel där den kortare kateten har längden r (som alltså är den mindre cirkelns radie) och hypotenusan har längden 2R - r (om R betecknar den större cirkelns radie).

Trigonometri ger då att r/(2R - r) = sin(π/6) = 1/2 och ur detta går det att lösa ut ett förhållande mellan R och r som sedan kan användas för att bestämma förhållandet mellan cirklarnas areor.
Citera
2017-10-25, 19:54
  #90043
Medlem
WorlocKs avatar
Citat:
Ursprungligen postat av fafesc
Om minustecknet står innan kvadraten så blir det alltid negativt som du är inne på, i ditt exempel blir det alltså -4 oavsett om det är 2 eller -2 du sätter in.
Tack!
Citera
2017-10-25, 20:05
  #90044
Medlem
Citat:
Ursprungligen postat av nihilverum
Av symmetriskäl så är vinkeln mellan den vågräta linjen och BC samt mellan den vågräta linjen och BD båda π/6. Dra en linje från den lilla cirkelns centrum till endera punkten där BC eller BD tangerar cirkeln. Detta kommer att ge upphov till en rätvinklig triangel, eftersom en radie i en cirkel alltid är vinkelrät mot motsvarande tangent.

Då har du alltså en rätvinklig triangel där den kortare kateten har längden r (som alltså är den mindre cirkelns radie) och hypotenusan har längden 2R - r (om R betecknar den större cirkelns radie).

Trigonometri ger då att r/(2R - r) = sin(π/6) = 1/2 och ur detta går det att lösa ut ett förhållande mellan R och r som sedan kan användas för att bestämma förhållandet mellan cirklarnas areor.
Tackar! Var det jag var inne på men lyckades stöka till det lite...

Ännu en fråga: https://i.imgur.com/ASeTIP3.png

Svar: https://i.imgur.com/mwU7m3X.png

Hänger inte med på det sista i facit riktigt, varför blir det (12 8)x^7
Citera
2017-10-25, 20:42
  #90045
Medlem
nihilverums avatar
Citat:
Ursprungligen postat av fafesc
Tackar! Var det jag var inne på men lyckades stöka till det lite...

Ännu en fråga: https://i.imgur.com/ASeTIP3.png

Svar: https://i.imgur.com/mwU7m3X.png

Hänger inte med på det sista i facit riktigt, varför blir det (12 8)x^7

Du har ju (1 + x)¹² inom parentes och detta multipliceras med 1/x utanför. Har man (a + b)ⁿ så kommer termen med aᵏ att ha koefficienten (n över k). Här vill du alltså få ut termen med x⁸ ur (1 + x)¹² eftersom faktorn 1/x utanför parentesen kommer att göra så att det blir termen med x⁷. Eftersom koefficienten för x⁸ ur (1 + x)¹² blir (12 över 8) så är det koefficienten för x⁷ för hela uttrycket.
Citera
2017-10-25, 22:29
  #90046
Medlem
Fhitals avatar
Hej! Behöver hjälp med att räkna ut P-värdet från ett F-test. Alltså hypotesprövning.



n1 = 10
µ1 = 9.6
S1^2 = 10.89

n2 = 10
µ2 = 9.9
S2^2 = 11.9

alpha = 0.1

Vill undersöka om man kan förkasta H0, dvs att S1^2 = S2^2, och i stället konstatera att H1 är sann, där H1: S1^2 < S2^2

Vi har alltså att S1^2 ÷ S2^2 = 0.9151
Undersöker sedan F(9, 9) = 2.440.

Med hjälp av dessa värden ska det gå att räkna fram ett P-värde på 0.4485. Jag förstår hur man räknar ut P-värden med hjälp av Z- och T-tabeller, men har svårt för F-tabeller. Hur går man tillväga för att få fram 0.4485?
Citera
2017-10-25, 23:52
  #90047
Medlem
Hej behöver hjälp med dessa två. Förstår inte alls så förklara gärna som om jag var 5 år.

1. (a) Namnge fyra delmängder till mängden av alla fyrhörningar.
(b) Ange grafiskt hur dessa delmängder förhåller sig till varandra. Är till
exempel någon av dessa delmängder innehållen i någon av de andra delmängderna
av fyrhörningar?
(c) Ge definitionerna för dessa delmängder

2. Ge lösningsmängden för följande olikhet
|x − 1| > 2|x − 2|.
Citera
2017-10-26, 14:29
  #90048
Medlem
https://i.imgur.com/e0hHOrW.png

Med hjälp av geometrisk summa får jag

((x^2*∞)-1)/(x-1) < 2

Men hur ska jag gå vidare?
Citera

Skapa ett konto eller logga in för att kommentera

Du måste vara medlem för att kunna kommentera

Skapa ett konto

Det är enkelt att registrera ett nytt konto

Bli medlem

Logga in

Har du redan ett konto? Logga in här

Logga in