2011-01-15, 12:05
  #5761
Medlem
f(x)=2cos(x) + x^(23423)arctan(x) + sin(x)...Tenta om f(x) timmar, där f beror av x. x är enhetslös och efterbliven. I detta fall är x=0. Hur många timmar är det kvar till tentan?

Hur går man tillväga?
Citera
2011-01-15, 12:13
  #5762
Medlem
PostWhores avatar
Vilken är dem 1000:e decimalen i 5/7?
Citera
2011-01-15, 12:48
  #5763
Medlem
zozolas avatar
Citat:
Ursprungligen postat av Red-nuht
f(x)=e^-2x+4x
f'(x)=-2e^-2x+4

Extrempunkterna får man fram genom att kolla var funktionens derivata är noll, det betyder att funktionen når ett maximum eller minium.

f'(x)=-2e^-2x+4=0 --> -2e^-2x=-4

e^-2x=2 --> ln(e^-2x)=ln(2)

-2x*ln(e)=ln(2) --> -2x*1=ln(2)

x=ln(2)/-2

Man kan kolla om detta är ett minimum eller maximum genom att derivera en gång till.

Om f''(ln(2)/-2) > 0 betyder det att det är ett minimum om f''(ln(2)/-2) < 0 ett maximum.

f''(x)=4e^-2x

f''(ln(2)/-2)=4*e^(ln(2)/-2)=4*1/sqrt(2) vilket ju är större än noll, alltså är det ett minimum.

4*e^-2(ln(2)/-2) är det väl, så det måste bli 4e^ln2 ?
Citera
2011-01-15, 13:00
  #5764
Medlem
Citat:
Ursprungligen postat av zozola
4*e^-2(ln(2)/-2) är det väl, så det måste bli 4e^ln2 ?

Korrekt , spelar dock ingen större roll då det är större än noll det med

4*e^-2x är ju större än noll för alla x, det borde jag sett redan från början
Citera
2011-01-15, 13:04
  #5765
Medlem
Hej, jag diskuterade med en vän om två uppgifter idag. Varken jag eller hon fick rätt.

För vilka värden på a skär kurvan y=-4x^2+16x-a?

Lös ekvationen (2x)-(4/x-1)=0 , där x /ne 1

Vill någon förklara hur man räknar ut dessa så vi kan visa vår lärare att vi kan!
Tack
Citera
2011-01-15, 13:17
  #5766
Medlem
Citat:
Ursprungligen postat av Besfort
Hej, jag diskuterade med en vän om två uppgifter idag. Varken jag eller hon fick rätt.

För vilka värden på a skär kurvan y=-4x^2+16x-a?

Lös ekvationen (2x)-(4/x-1)=0 , där x /ne 1

Vill någon förklara hur man räknar ut dessa så vi kan visa vår lärare att vi kan!
Tack

1.
För vilka värden på a skär kurvan y vadå?

2.

Står det 2x-(4/x -1)=0 eller 2x-(4x/(x-1))=0 ?
Citera
2011-01-15, 13:51
  #5767
Medlem
NanoFighters avatar
Citat:
Ursprungligen postat av Besfort
Hej, jag diskuterade med en vän om två uppgifter idag. Varken jag eller hon fick rätt.

För vilka värden på a skär kurvan y=-4x^2+16x-a?

Lös ekvationen (2x)-(4/x-1)=0 , där x /ne 1

Vill någon förklara hur man räknar ut dessa så vi kan visa vår lärare att vi kan!
Tack

https://www.flashback.org/t1424320

vad är problemet?
Citera
2011-01-15, 14:25
  #5768
Bannlyst
Hej hopp, need some help:

Matte D

http://img338.imageshack.us/img338/2378/hur.png

Jag har kommit så långt att jag ritat av figuren och att jag vet tre saker, nämligen 8.4, 11.4, och 90 grader.

Om den nya triangeln är likbent, så vet jag ju fler vinklar och problem is solved. Men det vet jag ju inte om den är?
Citera
2011-01-15, 14:32
  #5769
Medlem
NanoFighters avatar
Citat:
Ursprungligen postat av Minuten
Hej hopp, need some help:

Matte D

http://img338.imageshack.us/img338/2378/hur.png

Jag har kommit så långt att jag ritat av figuren och att jag vet tre saker, nämligen 8.4, 11.4, och 90 grader.

Om den nya triangeln är likbent, så vet jag ju fler vinklar och problem is solved. Men det vet jag ju inte om den är?

Nyttja cosinussatsen för att ta reda på sista sidans längd.
Citera
2011-01-15, 14:33
  #5770
Medlem
Citat:
Ursprungligen postat av Minuten
Hej hopp, need some help:

Matte D

http://img338.imageshack.us/img338/2378/hur.png

Jag har kommit så långt att jag ritat av figuren och att jag vet tre saker, nämligen 8.4, 11.4, och 90 grader.

Om den nya triangeln är likbent, så vet jag ju fler vinklar och problem is solved. Men det vet jag ju inte om den är?


Fattas det lite av bilden eller? Det ser ut som att att det ska vara en stor triangel.

Jag skulle rösta för att du ritar en bättre bild och lägger upp den här.
Citera
2011-01-15, 14:41
  #5771
Bannlyst
Citat:
Ursprungligen postat av NanoFighter
Nyttja cosinussatsen för att ta reda på sista sidans längd.

Har inte gått igenom det än. Har bara fipplat med rätvinkliga trianglar hittils med sin v, cos v och tan v. Så jag antar att jag ska lösa den med det jag hittils kan då uppgiften finns före genomgången av sinussatsen. I bilden är ju triangeln uppdelat till en rätvinklig.

Citat:
Ursprungligen postat av Red-nuht
Fattas det lite av bilden eller? Det ser ut som att att det ska vara en stor triangel.

Jag skulle rösta för att du ritar en bättre bild och lägger upp den här.

Ja, det är möjligt.

Skiten är hämtad från internet, så jag kan inte ta någon bättre bild. Men jag antar att det inte står något på det som inte kom med?
__________________
Senast redigerad av Minuten 2011-01-15 kl. 14:44.
Citera
2011-01-15, 14:44
  #5772
Medlem
Citat:
Ursprungligen postat av Minuten
Har inte gått igenom det än. Har bara fipplat med rätvinkliga trianglar hittils med sin v, cos v och tan v. Så jag antar att jag ska lösa den med det jag hittils kan då uppgiften finns före genomgången av sinussatsen.



Ja, det är möjligt.

Skiten är hämtad från internet, så jag kan inte ta någon bättre bild. Men jag antar att det inte står något på det som inte kom med?


Står det 41° längst ner i vänstra hörnet? Om det gör det så kan du använda areasatsen.
Citera

Skapa ett konto eller logga in för att kommentera

Du måste vara medlem för att kunna kommentera

Skapa ett konto

Det är enkelt att registrera ett nytt konto

Bli medlem

Logga in

Har du redan ett konto? Logga in här

Logga in