Citat:
Ursprungligen postat av
-Firben-
Skriv talet
(i+1)^13/(i-1)^17
på formen a+bi
någon ?
Gå via polär framställning:
1+i = √2 e^(iπ/4)
(1+i)^13 = 2^(13/2) e^(13iπ/4) = 2^(13/2) e^(5iπ/4)
1-i = √2 e^(-iπ/4)
(1-i)^17 = 2^(17/2) e^(-17iπ/4) = 2^(17/2) e^(-iπ/4)
(1+i)^13 / (1-i)^17 = ( 2^(13/2) e^(5iπ/4) ) / ( 2^(17/2) e^(-iπ/4) ) = 2^(-4/2) e^(6iπ/4)
= (1/4) e^(3iπ/2) = (1/4) (-i) = -(1/4) i.