2010-10-27, 22:31
  #2221
Medlem
Citat:
Ursprungligen postat av sp3tt
2x^2 + 9x +3 = 0
x^2 + 9x/2 + 3/2 = 0
Men (x+9/4)^2 = x^2 + 9x/2 + 81/16
x^2 + 9x/2 + 3/2 = (x+9/4)^2 -81/16 + 3/2 =
= (x+9/4)^2 - 57/16

Håller med!

Finns det några allmänna knep man kan använda sig av vid sådana här uppgifter? Eller är det bara att träna på så lär man sig att se mönstren?
Citera
2010-10-27, 22:34
  #2222
Medlem
sp3tts avatar
Citat:
Ursprungligen postat av Derivative
Finns det några allmänna knep man kan använda sig av vid sådana här uppgifter? Eller är det bara att träna på så lär man sig att se mönstren?
(x+a) = x^2 + 2ax + a^2
Välj a så att det passar med din ekvation, justera med en konstant efteråt.
Citera
2010-10-27, 22:37
  #2223
Medlem
Citat:
Ursprungligen postat av evolo
Nu står det helt still i huvudet:

Hur löser jag denna ekvation och vad blir X?: 11-X/7=3/X-9

Ingen som kan hjälpa mig, jag får verkligen inte ihop den.
Citera
2010-10-27, 22:47
  #2224
Medlem
imadeajokes avatar
Citat:
Ursprungligen postat av evolo
Ingen som kan hjälpa mig, jag får verkligen inte ihop den.

11-x/7=3/9-x

förläng båda nämnare så dem blir lika:
(11-x/7)*(9-x)=(3/9-x)*7
-99x+9x^2/63-7x=21/63-7x
sen sätter du -99+x^2=21:
x=sqrt120

hoppas det blev rätt nu.
Citera
2010-10-27, 22:48
  #2225
Medlem
Ironghosts avatar
Citat:
Ursprungligen postat av manne1973
y(x) = ln(2) är en lösning till ekvationen, så y'(1) = 0 är helt korrekt.

Tack!
Citera
2010-10-27, 22:59
  #2226
Medlem
Citat:
Ursprungligen postat av sp3tt
(x+a) = x^2 + 2ax + a^2
Välj a så att det passar med din ekvation, justera med en konstant efteråt.


ja, så lätt var det! Konstig att dom aldrig lärt ut det på gymnasiet fastän jag läste A-E + diskret och breddning

Dom har bara visat hur man utvecklar binom.
Citera
2010-10-27, 23:09
  #2227
Medlem
Skulle behöva hjälp med att lösa denna uppgift, då jag aldrig stött på något liknande förut! Hur tolkar man den?

Ange antalet lösningar till ekvationen (x|-2)(3-|x)=4
Citera
2010-10-27, 23:57
  #2228
Medlem
Citat:
Ursprungligen postat av Derivative
Skulle behöva hjälp med att lösa denna uppgift, då jag aldrig stött på något liknande förut! Hur tolkar man den?

Ange antalet lösningar till ekvationen (x|-2)(3-|x)=4
Jag förstår inte vad (x|y) betyder här. Har du något sammanhang, en definition av (x|y)?
Citera
2010-10-28, 00:43
  #2229
Medlem
Otroligs avatar
Citat:
Ursprungligen postat av manne1973
Jag förstår inte vad (x|y) betyder här. Har du något sammanhang, en definition av (x|y)?
Jag gissar på att det är den inre produkten, kanske?
Citera
2010-10-28, 01:15
  #2230
Medlem
sp3tts avatar
Citat:
Ursprungligen postat av manne1973
Jag förstår inte vad (x|y) betyder här. Har du något sammanhang, en definition av (x|y)?
Citat:
Ursprungligen postat av Otrolig
Jag gissar på att det är den inre produkten, kanske?
Själv lutar jag åt att det ska stå (|x|-2)(3-|x|), alltså absolutbelopp. 3- är ju inget man brukar ta inre produkten med.
Citera
2010-10-28, 11:13
  #2231
Medlem
Hello Fellow Flashbackers! hehe

Nu sitter jag med Matte D boken och har fastnat på ett tal, jag får samma svar som på facit.. Men sen har dom gjort om talet till bråkform för att göra det "finare", som alla Matte lärare älskar att se på MVG prov, hehe. Hur som helst, här kommer talet med ett exempel först så ni hänger med lite =). Tack på förhand!


Exempel uppgiften: y = 3 / x² Görs först om till ---> y = 3x-² Så man lättare kan DERIVERA sen (Eller lättare för mig att tänka så eftersom nästa uppgift använder denna metod men omvänt).


Derivatan av detta blir då: y' = -6x-³ Som kan skrivas om till ---> - (6 / x³) Genom att använda metoden ovan omvänt.


Ska även räkna andraderivatan så kan passa på att dra in den med:

y'' = 18x ^ -4 Som även här kan skrivas om till ---> 18 / x^4




Och nu till uppgiften: y = 1/x + √x

Detta kan skrivas som: y = 1/x + x^½

(Enligt formelsamlingen vi får på lektionerna är: y = 1/x ---> y' = -(1/x²))
(Som jag nedan kommer skriva som: -x-² , det är ju samma men så vi håller oss till metoden ovan).

Och detta deriveras då till: y' = -x-² + 0.5x^-½

Andraderivatan skulle då se ut såhär: y'' = 2x-³ - 0.25x^1.5


Så långt blir allt rätt.. Det är NU jag behöver hjälp att förstå.


Varför står det: y' = -x-² + 0.5x^-½ = -(1/x²) + (1/(2√x)) i facit ??


Jag vill ju att det ska vara: y' = -x-² + 0.5x^-½ = -(1/x²) + (0.5/(2√x))


Har även samma problem med andraderivatan! Kan någon vara snäll och förklara
Citera
2010-10-28, 11:31
  #2232
Medlem
Whodoyous avatar
Vad blir resten om man dividerar f(x) = (x^100 + x^67 - x^32 - 2x^9 + 1) med (x - 1) respektive (x + 2)?

(x - 1) fungerar ju att köra faktor satsen med... för f(1) = 0 så går det ju jämt upp alltså måste (x - 1) dela hela f(x) utan att ge någon rest.

Tänkte att man kunde köra med liggande stolen på x + 2 men det blev ju en sjuuukt lång utveckling. =(
Eller kan man tänka liknande som jag gjorde med x - 1?
__________________
Senast redigerad av Whodoyou 2010-10-28 kl. 11:33.
Citera

Skapa ett konto eller logga in för att kommentera

Du måste vara medlem för att kunna kommentera

Skapa ett konto

Det är enkelt att registrera ett nytt konto

Bli medlem

Logga in

Har du redan ett konto? Logga in här

Logga in