An open label study to determine the effects of an oral proteolytic enzyme system on whey protein concentrate metabolism in healthy males
Julius Oben, Shil C Kothari, och Mark L Anderson
http://www.jissn.com/content/5/1/10
Citat:
Abstract
Background
Current research suggests that protein intake of 1.5 – 2.8 g/kg/day (3.5 times the current recommended daily allowance) is effective and safe for individuals trying to increase or maintain lean muscle mass. To achieve these levels of daily protein consumption, supplementing the diet with processed whey protein concentrate (WPC) in liquid form has become a popular choice for many people. Some products have a suggested serving size as high as 50 g of protein. However, due to possible inhibition of endogenous digestive enzymes from over-processing and rapid small intestine transit time, the average amount of liquid WPC that is absorbed may be only 15 g. The combined effect of these factors may contribute to incomplete digestion, thereby limiting the absorption rate of protein before it reaches the ceacum and is eliminated as waste. The purpose of this study was to determine if Aminogen®, a patented blend of digestive proteases from Aspergillus niger and Aspergillus oryzae, would significantly increase the in-vivo absorption rate of processed WPC over control values. It also investigated if any increase would be sufficient to significantly alter nitrogen (N2) balance and C-reactive protein (CRP) levels over control values as further evidence of increased WPC absorption rate.
Methods
Two groups of healthy male subjects were assigned a specified balanced diet before and after each of two legs of the study. Subjects served as their own controls. In the first leg each control group (CG) was dosed with 50 g of WPC following an overnight fast. Nine days later each test group (TG) was dosed following an overnight fast with 50 g of WPC containing either 2.5 g (A2.5) or 5 g (A5) of Aminogen®. Blood samples were collected during each leg at 0 hr, 0.5 hr, 1 hr, 2 hr, 3 hr, 3.5 hr and 4 hr for amino acid (AA) and CRP analyses. The following 18 AAs were quantified: alanine, arginine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine. Urine was collected for 24 hours from 0 hr for total N2 analysis. Results are expressed as means ± SEM. All significance and power testing on results was done at a level of alpha = 0.05. Area under the concentration time curve (AUC) was calculated using the trapezoidal rule. One-way analysis of variance (ANOVA-1) was done between CGs, between TGs and between time points. One-way repeated measures analysis of variance (ANOVA-1-RM) was done to compare CGs and TGs. Two-way analysis of variance (ANOVA-2) was performed on total serum amino acid (TSAA) levels, urine N2 levels and CRP levels between each CG and TG.
Results
After baseline subtraction the mean AUC was significantly (p ≤ 0.05) greater in each TG compared the corresponding CG. Comparison of the mean AUC between each TG and each CG was not significantly different. Total serum amino acid (TSAA) levels were significantly greater in each TG compared the corresponding CG. They were also significantly different between each TG but not between each CG. All individual serum amino acid (ISAA) levels in TG-A2.5 except glycine, histidine, methionine and serine were significantly higher than in CG-A2.5 at 4 hr. All ISAA levels in TG-A5 except methionine and serine were significantly higher than in CG-A5 at 4 hr. The N2 balance was significantly higher in each TG compared to the corresponding CG, but not significantly different between each CG and between each TG. Significant differences in CRP levels are reported between each TG compared to the corresponding CG, but not significantly different between each TG and between each CG.
Conclusion
A patented blend of digestive proteases (Aminogen®) increased the absorption rate of processed WPC over controls, as measured by statistically significant increases in AUC, TSAA levels, ISAA levels and N2 balance. Significant decreases in CRP levels and fluxes in AA levels are also reported.
Med bakgrund i detta:
https://www.flashback.org/sp42157012 skulle jag vilja ge mig på påståendet att man enbart kan ta upp 15 gram vassleprotein på fastande mage. Påståendet har sitt ursprung i ovan länkade studie.
När författarna tar fram siffran ifråga utgår de från att upptagshastigheten för vassleprotein på tom mage är runt 10 gram i timmen, vilket stämmer, sedan beräknar de det maximala upptaget genom att utgå från att tunntarmspassagen för en vätska i snitt tar en och en halv timme. Detta värde gäller dock för en näringslös bariumlösning och kan på intet sätt överföras på en vassleproteinlösning, ty ju närings- och proteinrikare innehållet är desto längre tid tar passagen.
Påståendet att vassleprotein skulle hanteras på ett sådant sätt att matsmältningsenzymerna skulle inhiberas, vilket ytterligare skulle sänka upptaget, faller också om man granskar referenserna. Studien de refererar till undersökte vassleproteinkoncentrat med en proteinhalt på 15% och fann att värmebehandling av sagda proteinkoncentratet minskade näringstillgängligheten. Resultatet är inte överförbart till vassletillskott som hanteras mer varsamt och ej upphettas.
Studien i sig bekräftar sedan inte heller antagandet att upptaget av vassleprotein skulle vara begränsat. Studie visar enbart att studiefinansiärens produkt ökar upptagshastigheten, men säger inget om det totala upptaget. Sedan är studieresultatet i sig väldigt skumt, läs: någon har troligen fifflat med siffrorna, men det är inte det jag vill angripa så jag går inte in på det.
Hursomhelst, det är mycket möjligt att vassleprotein är så snabbt att upptaget är begränsat på fastande mage, men någon forskning som stödjer det påståendet finns inte (det behövs mer forskning på proteinupptag generellt). Den här studien är ingen referens i sammanhanget.