Vinnaren i pepparkakshustävlingen!
2017-12-26, 19:14
  #1
Medlem
prettyinpurples avatar
Kära flashbackare,

Jag har suttit med en uppgift i ett par dagar nu och har kört fast. Jag ska dimensionera en vatten pump till en gård som kräver flödet 0,019 m^3/s med normalt tryck i kran typ 3 bar. Gården befinner sig på 80 m höjd från uttagspunkten (lokala vattennätet) och friktions förlusterna i rören är 20 000 Pa (detta har jag fått genom att beräkna Reynolds och Moody diagram).

Min första tanke var att använda Bernoullis ekvation och helt enkelt beräkna delta p mellan punkterna och sedan beräkna energin som pumpen måste tillföra men jag har kört fast och kommer inte vidare. Jag är inte ute efter en snålskjuts och vill gärna förstå hur jag går tillväga men har tyvärr ingen kunnig person som jag kan fråga. Någon snäll kunnig person där ute som kan hjälpa mig?

Tack på förhand!

__________________
Senast redigerad av prettyinpurple 2017-12-26 kl. 19:21.
Citera
2017-12-26, 19:48
  #2
Medlem
prettyinpurples avatar
Citat:
Ursprungligen postat av prettyinpurple
Kära flashbackare,

Jag har suttit med en uppgift i ett par dagar nu och har kört fast. Jag ska dimensionera en vatten pump till en gård som kräver flödet 0,019 m^3/s med normalt tryck i kran typ 3 bar. Gården befinner sig på 80 m höjd från uttagspunkten (lokala vattennätet) och friktions förlusterna i rören är 20 000 Pa (detta har jag fått genom att beräkna Reynolds och Moody diagram).

Min första tanke var att använda Bernoullis ekvation och helt enkelt beräkna delta p mellan punkterna och sedan beräkna energin som pumpen måste tillföra men jag har kört fast och kommer inte vidare. Jag är inte ute efter en snålskjuts och vill gärna förstå hur jag går tillväga men har tyvärr ingen kunnig person som jag kan fråga. Någon snäll kunnig person där ute som kan hjälpa mig?

Tack på förhand!


Finns det ingen där ute som kan hjälpa mig?
Citera
2017-12-26, 20:00
  #3
Medlem
megacoolmans avatar
Ok. Du behöver först räkna ut den totala tryckhöjden pumpen måste klara av (den fysiska lyfthöjden+tryckfall i ledningarna+det tryck du vill kunna hålla i slutänden i kranen)
Tryckhöjden anges oftast i meter vattenpelare (mvp) eller i kPa

Sen måste du ha tillgång till tekniska data för lämpliga pumpar. Där finns ett diagram där du kan utläsa om pumpen klarar av att leverera ett visst flöde med ett önskat tryck.
Titta t ex på www.grundfos.se

Det finns pumpar med olika karakteristik. Olika stora motorer i förhållande till storlek på pumphus och impeller eller antal ringar, samt olika bra verkningsgrad. Så att bara räkna ut tillförd energi löser nog inte problemet.
__________________
Senast redigerad av megacoolman 2017-12-26 kl. 20:16.
Citera
2017-12-26, 20:34
  #4
Medlem
prettyinpurples avatar
Citat:
Ursprungligen postat av megacoolman
Ok. Du behöver först räkna ut den totala tryckhöjden pumpen måste klara av (den fysiska lyfthöjden+tryckfall i ledningarna+det tryck du vill kunna hålla i slutänden i kranen)
Tryckhöjden anges oftast i meter vattenpelare (mvp) eller i kPa

Sen måste du ha tillgång till tekniska data för lämpliga pumpar. Där finns ett diagram där du kan utläsa om pumpen klarar av att leverera ett visst flöde med ett önskat tryck.
Titta t ex på www.grundfos.se

Det finns pumpar med olika karakteristik. Olika stora motorer i förhållande till storlek på pumphus och impeller eller antal ringar, samt olika bra verkningsgrad. Så att bara räkna ut tillförd energi löser nog inte problemet.

TACK, jag uppskattar din hjälp enormt! Jag förstår hur jag ska attackera problemet. Jag förstår sambandet tryck och vattenpelare men jag vet inte hur jag ska konvertera tryck/vattenpelare till effekt.

Jag har en formel som lyder P = ( Volymflödet * delta p (pump))/ verkningsgrad

Syftar man då på tryckskillnaden från bottennivån upp till högsta punkten? Finns det något annat sätt att konvertera tryck/vätskepelare -> effekt? Jag har i uppgift att räkna ut effekten i första steget utan att ta hänsyn till vilken typ av pump det är vilket är förvirrande då jag inte heller har tillgång till verkningsgraden. Finns det någon "standard verkningsgrad" för pumpar som man kan dra till med? Typ 70%?
Citera
2017-12-26, 21:37
  #5
Medlem
megacoolmans avatar
Hmm, nu börjar det bli lite trixigt för en gammal rörmokare, men jag TROR det blir som följer.

Formeln för den hydrauliska effekten säger att P=p*Q

Inser ju nu att du ska ansluta mot det lokala vattennätet och konstruera en tryckstegringsanläggning.
Då borde lilla p i formeln bli = den fysiska höjdskillnaden (80m) + tryckfall i rörledningar + 3 bars vattentryck i kran - trycket i det lokala vattennätet. Precis som du var inne på tidigare

p = Pa och Q= m3/s

Sedan får man ju ta hänsyn till pumpens (och drivmotorns) verkningsgrad för att räkna ut den totala effekt som krävs för att driva pumpen.
__________________
Senast redigerad av megacoolman 2017-12-26 kl. 21:42.
Citera
2017-12-26, 22:01
  #6
Medlem
prettyinpurples avatar
Citat:
Ursprungligen postat av megacoolman
Hmm, nu börjar det bli lite trixigt för en gammal rörmokare, men jag TROR det blir som följer.

Formeln för den hydrauliska effekten säger att P=p*Q

Inser ju nu att du ska ansluta mot det lokala vattennätet och konstruera en tryckstegringsanläggning.
Då borde lilla p i formeln bli = den fysiska höjdskillnaden (80m) + tryckfall i rörledningar + 3 bars vattentryck i kran - trycket i det lokala vattennätet. Precis som du var inne på tidigare

p = Pa och Q= m3/s

Sedan får man ju ta hänsyn till pumpens (och drivmotorns) verkningsgrad för att räkna ut den totala effekt som krävs för att driva pumpen.

Grymt!! Kanske kan jag skippa att lägga på 3 bar i kranen och jämka det mot vattennätets tryck. Det måste väl vara ett brukligt tryck i nätet?

Det låter vettigt med P=p*Q - det ger rätt enhet med N/m^2*m^3/s =>Nm/s (P).

Tack snälla för all hjälp - jag kommer få ihop detta nu!
Citera
2017-12-26, 22:31
  #7
Medlem
megacoolmans avatar
Citat:
Ursprungligen postat av prettyinpurple
Grymt!! Kanske kan jag skippa att lägga på 3 bar i kranen och jämka det mot vattennätets tryck. Det måste väl vara ett brukligt tryck i nätet?

Det låter vettigt med P=p*Q - det ger rätt enhet med N/m^2*m^3/s =>Nm/s (P).

Tack snälla för all hjälp - jag kommer få ihop detta nu!

Vattentrycket kan vara lite olika beroende på var man befinner sig, men 4-5 bar är vanligt.
Oavsett vilket så kan du jämka mot vattennätets tryck om du vill hålla samma tryck i slutänden som vid anslutningspunkten.

Det är lugnt Hoppas jag gjorde lite nytta. Har lite svårt för att förklara ibland
Skriv gärna vilket svar du kommer fram till, så får vi se om vi kommer fram till liknande resultat
Citera
2017-12-27, 20:02
  #8
Medlem
prettyinpurples avatar
Hej,

Jag såg att jag angivit förlusterna i Pa men rättningen är 20 000 m, alltså i höjdskillnad.

Alltså är P=Qp=(20 000 + 80)*9,81*10^3*0,019= 3742 kPa

där 0,019 är Q (volymflödet) och p är friktionsförlusterna + höjdskillnaden uttryckt i Pa. Ser det ut att stämma enligt dig?

Citera
2017-12-28, 22:12
  #9
Medlem
megacoolmans avatar
Citat:
Ursprungligen postat av prettyinpurple
Hej,

Jag såg att jag angivit förlusterna i Pa men rättningen är 20 000 m, alltså i höjdskillnad.

Alltså är P=Qp=(20 000 + 80)*9,81*10^3*0,019= 3742 kPa

där 0,019 är Q (volymflödet) och p är friktionsförlusterna + höjdskillnaden uttryckt i Pa. Ser det ut att stämma enligt dig?


Nja, alltså 20.000 mVp i tryckförlust låter orimligt.

Jag kör i Pa rätt igenom för att inte förvirra mig själv här, så jag får det till:

P= (20000 Pa+784000 Pa) * 0,019 = 15278 W = 15,28 kW

80 mVp = 784 kPa = 784000 Pa
Citera
2017-12-29, 03:34
  #10
Medlem
prettyinpurples avatar
Citat:
Ursprungligen postat av megacoolman
Nja, alltså 20.000 mVp i tryckförlust låter orimligt.

Jag kör i Pa rätt igenom för att inte förvirra mig själv här, så jag får det till:

P= (20000 Pa+784000 Pa) * 0,019 = 15278 W = 15,28 kW

80 mVp = 784 kPa = 784000 Pa

Hej,

Jag valde ett rör med extremt liten diameter så det blev väldigt mycket friktion så jag bytte till ett större rör och förlusterna blev mer likt ditt svar och jag är i hamn. Det är svårt för en rör rookie att veta vad som är normalt och ej.

Tack för all hjälp - jag hade nog inte fixat det utan!
Citera

Stöd Flashback

Flashback finansieras genom donationer från våra medlemmar och besökare. Det är med hjälp av dig vi kan fortsätta erbjuda en fri samhällsdebatt. Tack för ditt stöd!

Stöd Flashback