Vinnaren i pepparkakshustävlingen!
  • 1
  • 2
2014-05-04, 18:34
  #1
Medlem
Honnetts avatar
Tjena behöver hjälp med en uppgift i ma3c. Hoppas att ni kan hjälpa mig med den!

Från boken

"Formen av en valvbåge kan beskrivas av det område som begränsas av graferna till funktionerna f och g samt x-axeln (Se figur). För att funktionerna gäller att f(x) = -x^2 + 4x och g(x) = -3x^2 + 12x - 9"

Beräkna Valvbågens area om 1 längdenhet motsvarar 1 meter.

Så har ni några förslag. Står helt still i huvudet nu.

Bild
http://fuskbugg.se/dl/DcWcPe/20140503_203942.jpg
Citera
2014-05-04, 18:51
  #2
Medlem
ZethMalkovis avatar
Hitta nollställena

Integrar över intervallet minus integralen över det tomma området
Citera
2014-05-04, 19:03
  #3
Medlem
Honnetts avatar
Citat:
Ursprungligen postat av ZethMalkovi
Hitta nollställena

Integrar över intervallet minus integralen över det tomma området

Tjena kan du utveckla lite.
Citera
2014-05-04, 19:16
  #4
Medlem
ZethMalkovis avatar
Citat:
Ursprungligen postat av Honnett
Tjena kan du utveckla lite.
Har ni gått igenom primitiva funktioner och bestämda integraler?
Citera
2014-05-04, 19:36
  #5
Medlem
Bu77ens avatar
Citat:
Ursprungligen postat av Honnett
Tjena behöver hjälp med en uppgift i ma3c. Hoppas att ni kan hjälpa mig med den!

Från boken

"Formen av en valvbåge kan beskrivas av det område som begränsas av graferna till funktionerna f och g samt x-axeln (Se figur). För att funktionerna gäller att f(x) = -x^2 + 4x och g(x) = -3x^2 + 12x - 9"

Beräkna Valvbågens area om 1 längdenhet motsvarar 1 meter.

Så har ni några förslag. Står helt still i huvudet nu.

Bild
http://fuskbugg.se/dl/DcWcPe/20140503_203942.jpg


[; A = \int_a^b f(x)dx - \int_c^d g(x)dx ;]

där a och b ges av skärningspunkterna mellan f(x) och x-axeln, dvs a=0 och b=4
och c och d ges av skärningspunkterna mellan g(x) och x-axeln, dvs c=1 och b=3

[; A = \int_0^4 (-x^2+4x)dx - \int_1^3 (-3x^2+12x-9)dx ;]

Räcker det som vägledning?
Citera
2014-05-04, 20:49
  #6
Medlem
Honnetts avatar
Citat:
Ursprungligen postat av Bu77en
[; A = \int_a^b f(x)dx - \int_c^d g(x)dx ;]

där a och b ges av skärningspunkterna mellan f(x) och x-axeln, dvs a=0 och b=4
och c och d ges av skärningspunkterna mellan g(x) och x-axeln, dvs c=1 och b=3

[; A = \int_0^4 (-x^2+4x)dx - \int_1^3 (-3x^2+12x-9)dx ;]

Räcker det som vägledning?

Vad menar du med "[; A = \int dx ;]" ?

Och utveckla gärna lite mer. Jag har suttit o klurat men får bara fel svar hela tiden.
__________________
Senast redigerad av Honnett 2014-05-04 kl. 20:57.
Citera
2014-05-04, 20:59
  #7
Medlem
Bu77ens avatar
Citat:
Ursprungligen postat av Honnett
Vad menar du med "[; A = \int dx ;]" ?

Och utveckla gärna lite mer. Jag har suttit o klurat men får bara fel svar hela tiden.


http://texify.com/?$A = \int_0^4 (-x...3x^2+12x-9)dx$
Citera
2014-05-04, 21:00
  #8
Medlem
Honnetts avatar
Citat:
Ursprungligen postat av Bu77en
http://texify.com/?$A = \int_0^4 (-x...3x^2+12x-9)dx$

jaha


Men kan du hjälpa mig lite mer. Får bara fel svar som sagt på matte uppgiften.
__________________
Senast redigerad av Honnett 2014-05-04 kl. 21:04.
Citera
2014-05-04, 21:09
  #9
Medlem
Bu77ens avatar
Citat:
Ursprungligen postat av Honnett
jaha


Men kan du hjälpa mig lite mer. Får bara fel svar som sagt på matte uppgiften.


Är det stegen fram till den integral som jag skrev ned som du har problem med, eller är det att beräkna själva integralen som du har problem med?
Citera
2014-05-04, 21:21
  #10
Medlem
Honnetts avatar
Citat:
Ursprungligen postat av Bu77en
Är det stegen fram till den integral som jag skrev ned som du har problem med, eller är det att beräkna själva integralen som du har problem med?

Beräkningen
Citera
2014-05-04, 21:36
  #11
Medlem
Bu77ens avatar
Citat:
Ursprungligen postat av Honnett
Beräkningen


[;
\\
A = \int_0^4 (-x^2+4x)dx - \int_1^3 (-3x^2+12x-9)dx =
\\
\int_0^4 -x^2dx + \int_0^4 4xdx + \int_1^3 3x^2dx + \int_1^3 -12xdx + \int_1^3 9dx

;]

Nu har jag skrivit om det som fem stycken enkla integraler. Är det någon av dessa som du kan räkna ut? Är det någon som du inte kan räkna ut?

Om du inte kan räkna ut dessa integraler så ska du öva på såna uppgifter till du behärskar dem innan du försöker dig på mer komplicerade uppgifter.

Är du säker på att du har förstått stegen fram till integraluttrycket för A, dvs varför integrationsgränserna blir 0 och 4 resp 1 och 3?
Citera
2014-05-04, 21:41
  #12
Medlem
Honnetts avatar
Citat:
Är du säker på att du har förstått stegen fram till integraluttrycket för A, dvs varför integrationsgränserna blir 0 och 4 resp 1 och 3?

Fattar sådär men om du kan förklara i ett pm eller i ett inlägg här så skulle det vara guld värt
Citera
  • 1
  • 2

Stöd Flashback

Flashback finansieras genom donationer från våra medlemmar och besökare. Det är med hjälp av dig vi kan fortsätta erbjuda en fri samhällsdebatt. Tack för ditt stöd!

Stöd Flashback