dy/dx = exp(-y)/(1+x²), y(0) = 1
Multiplicera med exp(y) dx ger:
dy exp(y) = exp(y)exp(-y)/(1+x²) dx = dx/(1+x²)
Integrera bägge led ger:
§ dy exp(y) = § dx/(1+x²)
exp(y) = arctan(x) + C
y = ln(arctan(x) + C)
y(0) = 1 ger:
y(0) = ln(arctan(0)+C)=1. Men arctan(0) = 0 ger ln(C)=1 så C = e¹ = e, alltså:
y = ln(arctan(x)+e)