Citat:
Ursprungligen postat av
Offsure
|z - 1| = |x + iy - 1| = |(x-1) + iy| = √[(x-1)² + y²] kallar denna etta.
På samma sätt är 2|z + 1| = 2√[(x+1)² + y²]. kallar denna för tvåa.
Sätt uttrycken lika med varandra och lös ekvationen. Tänk på att du med största sannolikhet kommer att få många lösningar, som i sig kommer att uttryckas med en ekvation.
Försöker göra som du gör, men det känns helt galet.
ettan: √(x-1)^2 + y^2 => x^2 - xy + y^2 + y^2
tvåan: 2(x^2 - xy + y^2 + y^2)
Slår man ihop dem:
x^2 - xy + y^2 + y^2 + 2x^2 - 2xy + 2y^2 + 2y^2
=> 3x^2 - 3xy + 6y^2
=> x^2 - xy + y^2 (tbx på nulll..:S:S )
Ehh.. känns helt fel