Vinnaren i pepparkakshustävlingen!
  • 1
  • 2
2010-11-13, 19:11
  #1
Medlem
Matte analys hjälp kring funderingar

Detta talet undrar jag om jag gör rätt, för jag får fram väldigt skumma värde när jag gör så.

(2x^2+13x-21)/(x-2) < 0 (egentligen lika med eller mindre, de ska vara ett streck under < )

Kan jag bara gånga både höger och vänsterled med (x-2) och få fram
(2x^2+13x-21) <0 och sedan dela allt på 2 och göra PQ formel.

x^2+6.5x-10.5 sedan PQ?


Andra talet är om absoultbelopp vet inte riktigt hur jag ska göra uppskattar tips/lösning.
|3x+2|< 3

(egentligen lika med eller mindre, de ska vara ett streck under < 3 )
Citera
2010-11-13, 19:56
  #2
Medlem
Torios avatar
I första fallet så måste du komma ihåg att (x-2) är negativt om x<2 och att olikheten vänds om du multiplicerar med ett negativt tal.
Samma sak får du tänka på vid absolutbeloppet, vilket du kan skriva om till

3x+2<3 om x>-2/3

-(3x+2)<3 om x<-2/3

Vilken mattekurs läseer du förresten?
Citera
2010-11-13, 20:03
  #3
Medlem
Precis börjat med analys. Men hur ska jag veta om det är negativt eller inte?
Citera
2010-11-13, 20:07
  #4
Medlem
Citat:
Ursprungligen postat av momopemp
Matte analys hjälp kring funderingar

Detta talet undrar jag om jag gör rätt, för jag får fram väldigt skumma värde när jag gör så.

(2x^2+13x-21)/(x-2) < 0 (egentligen lika med eller mindre, de ska vara ett streck under < )

Kan jag bara gånga både höger och vänsterled med (x-2) och få fram
(2x^2+13x-21) <0 och sedan dela allt på 2 och göra PQ formel.

x^2+6.5x-10.5 sedan PQ?
För det första: Tänk på att olikheter byter riktning om man multiplicerar med negativa tal.
För det andra: Du kan använda pq-formeln för att ta fram nollställena. Men sen då?


Citat:
Ursprungligen postat av momopemp
Andra talet är om absoultbelopp vet inte riktigt hur jag ska göra uppskattar tips/lösning.
|3x+2|< 3

(egentligen lika med eller mindre, de ska vara ett streck under < 3 )
Jag rekommenderar att dela upp i två olika fall: 3x+2 < 0 resp 3x+2 > 0. Lös ekvationen för vart och ett av dessa fall, men kom ihåg att lösningarna skall ligga inom respektive intervall.
Citera
2010-11-13, 20:08
  #5
Medlem
Citat:
Ursprungligen postat av momopemp
Precis börjat med analys. Men hur ska jag veta om det är negativt eller inte?
Som Torio skrev: x-2 är negativt om x<2, positivt om x>2, noll om x=2.
Citera
2010-11-13, 20:16
  #6
Medlem
Ja men då måste jag ta reda på när uttrycket ändrar tecken alltså när något intressant händer och det är vid 2 där den kan bli icke definerad men vilka mer värde ? ska jag lösa ut andra gradsevkationen i täljaren för hitta de intressanta x:en?
Citera
2010-11-13, 20:43
  #7
Medlem
Citat:
Ursprungligen postat av momopemp
ska jag lösa ut andra gradsevkationen i täljaren för hitta de intressanta x:en?
Vad menar du med "lösa ut"? Ah, du menar nog bara "lösa"... eller snarare "hitta nollställena".

Ja, att hitta nollställena till täljaren är en bra början.
Citera
2010-11-13, 21:01
  #8
Medlem
Har hittat nollställe får konstiga tal typ 1.33... och -7.83.. och har satt in de på tallinje och får fram att när x< - 7,83 så blir hela uttrycket mindre än eller lika med noll.

när 1.33<x<2 så blir också uttrycket mindre eller lika med noll.

Kan det stämma?
Citera
2010-11-13, 21:40
  #9
Medlem
Här kan du se lösningarna:
http://www.wolframalpha.com/input/?i...28x-2%29+%3C+0
Citera
2010-11-13, 21:42
  #10
Medlem
Citat:
Ursprungligen postat av manne1973
Här kan du se lösningarna:
http://www.wolframalpha.com/input/?i...28x-2%29+%3C+0
Tack så mycket för sidan Då hade jag gjort rätt
Citera
2010-11-14, 13:10
  #11
Medlem
Försöker nu lösa uppgiften med absoultbelopp men vet ej om jag är på rätt väg har gjort så här

|3x+2|< 3

sqrt(3x+2)^2 < 3

(3x+2)^2 < 9

9x^2+12x+4 < 9

9x^2+12x-5 < 0

Här gör jag PQ formel och sätter = 0 för att få fram nollställena, dvs var ekvationen ändrar tecken och jag får fram värdena 1/3 och -5/3 är jag på rätt väg eller är jag helt ute och cyklar? Uppskattar hjälp

Det jag gjorde i början är defenitionen av absoultbelopp alltså sqrt(A+B)^2 ska man göra så eller börjar jag helt fel?
Citera
2010-11-14, 16:20
  #12
Medlem
Citat:
Ursprungligen postat av momopemp
är jag på rätt väg eller är jag helt ute och cyklar?
Jag ser inget fel i tillvägagångssättet.


Citat:
Ursprungligen postat av momopemp
Det jag gjorde i början är defenitionen av absoultbelopp alltså sqrt(A+B)^2 ska man göra så eller börjar jag helt fel?
Som sagt... Jag ser inget fel i tillvägagångssättet - i det här fallet, skall tilläggas. I andra fall går det kanske inte att göra så här.

Du bör skriva |x| = sqrt(x^2), inte sqrt(x)^2. Hoppas att du förstår skillnaden.

Dessutom behöver knappast gå via definitionen. Det räcker att utnyttja att då 0 < u < v så gäller 0 < u^2 < v^2. Här är u = |3x+2| och v = 3.
Citera
  • 1
  • 2

Stöd Flashback

Flashback finansieras genom donationer från våra medlemmar och besökare. Det är med hjälp av dig vi kan fortsätta erbjuda en fri samhällsdebatt. Tack för ditt stöd!

Stöd Flashback