• 2
  • 3
2021-03-01, 15:06
  #25
Medlem
Flammarions avatar
Citat:
Ursprungligen postat av BaronVonHelsing
Jag håller med, men varför skulle denna intelligens kunna leva efter döden? I vilket stadie mellan apa och människa blev det så, och varför?

Jag tror också på mjukvarans existens, men jag ser också hur bilden måste konkretiseras.

En aspekt på det temat är att mjukvara inte är beroende av någon specifik hårdvara för sin existens. Mjukvara är lätt att lagra, kopiera och sprida. Det är hur jag tolkar begreppet "själens odödlighet."
I det fallet människans kollektiva själ förstås, folksjälen, i form av kultur.

En annan aspekt på temat är att ett universa med en ändlig mängd information måste upprepa sig.
Citera
2021-03-02, 09:51
  #26
Medlem
--Blackbird--s avatar
Till den som inte tror på liv efter döden:
Hur tror du att du föddes?
Citera
2021-03-04, 15:40
  #27
Medlem
En jävla tur att det finns argument. Vad skulle vara kvar utan dom liksom? Det vete gudarna. Och djävulen. Och högre makter framförallt. Eh. Bakom allt. Före. Fuck. Jag försökte iaf.
Citera
2021-03-04, 15:41
  #28
Medlem
Citat:
Ursprungligen postat av --Blackbird--
Till den som inte tror på liv efter döden:
Hur tror du att du föddes?
Jag försöker låta bli att tro saker om historik. Det är bäst att lita på fabler i fablernas värld.
Citera
2021-03-07, 14:00
  #29
Medlem
KTM_s avatar
Ja om vi antar att går genom olika former av "liv" så är det väl rimligt att anta i ett annat liv är vi mer eller mindre utvecklade.
Saknas korrelation mellan utveckling och "mening" ?
Eller så kanske man bara har tråkigt.
Moral är inget annat än ren nonsens.
Citera
2021-03-11, 02:55
  #30
Medlem
Theofrast.Bombasts avatar
https://en.wikipedia.org/wiki/No-hiding_theorem

Citat:
The no-hiding theorem[1] states that if information is lost from a system via decoherence, then it moves to the subspace of the environment and it cannot remain in the correlation between the system and the environment. This is a fundamental consequence of the linearity and unitarity of quantum mechanics. Thus, information is never lost. This has implications in black hole information paradox and in fact any process that tends to lose information completely. The no-hiding theorem is robust to imperfection in the physical process that seemingly destroys the original information.

This was proved by Samuel L. Braunstein and Arun K. Pati in 2007. In 2011, the no-hiding theorem was experimentally tested[2] using nuclear magnetic resonance devices where a single qubit undergoes complete randomization; i.e., a pure state transforms to a random mixed state. Subsequently, the lost information has been recovered from the ancilla qubits using suitable local unitary transformation only in the environment Hilbert space in accordance with the no-hiding theorem. This experiment for the first time demonstrated the conservation of quantum information.[3]

[...]

The proof of the no-hiding theorem is based on the linearity and the unitarity of quantum mechanics. The original information which is missing from the final state simply remains in the subspace of the environmental Hilbert space. Also, note that the original information is not in the correlation between the system and the environment. This is the essence of the no-hiding theorem. One can in principle, recover the lost information from the environment by local unitary transformations acting only on the environment Hilbert space. The no-hiding theorem provides new insights to the nature of quantum information. For example, if classical information is lost from one system it may either move to another system or can be hidden in the correlation between a pair of bit strings. However, quantum information cannot be completely hidden in correlations between a pair of subsystems. Quantum mechanics allows only one way to completely hide an arbitrary quantum state from one of its subsystems. If it is lost from one subsystem, then it moves to other subsystems.

In physics, conservation laws play important roles. For example, the law of conservation of energy states that the energy of a closed system must remain constant. It can neither increase nor decrease without coming in contact with an external system. If we consider the whole universe as a closed system, the total amount of energy always remains the same. However, the form of energy keeps changing. One may wonder if there is any such law for the conservation of information. In the classical world, information can be copied and deleted perfectly. In the quantum world, however, the conservation of quantum information should mean that information cannot be created nor destroyed. This concept stems from two fundamental theorems of quantum mechanics: the no-cloning theorem and the no-deleting theorem. But the no-hiding theorem is the ultimate proof of the conservation of quantum information. The importance of the no-hiding theorem is that it proves the conservation of wave function in quantum theory. This has never been proved earlier. What was known before is that the conservation of entropy holds for a quantum system undergoing unitary time evolution and if entropy represents information in quantum theory, then it is believed then that information should somehow be conserved. For example, one can prove that pure states remain pure states and probabilistic combination of pure states (called as mixed states) remain mixed states under unitary evolution. However, it was never proved that if the probability amplitude disappears from one system, it will reappear in another system. Thus, one may say that as energy keeps changing its form, the wave function keep moving from one Hilbert space to another Hilbert space. Since the wave function contains all the relevant information about a physical system, the conservation of wave function is tantamount to conservation of quantum information.

TL;DR

Alla tillstånd i universum är eviga.

Q.E.D
Citera
  • 2
  • 3

Stöd Flashback

Flashback finansieras genom donationer från våra medlemmar och besökare. Det är med hjälp av dig vi kan fortsätta erbjuda en fri samhällsdebatt. Tack för ditt stöd!

Stöd Flashback